Three‐dimensional quantitative analysis on granular particle shape using convolutional neural network

نویسندگان

چکیده

Abstract To identify all desired shape parameters of granular particles with less computational cost, this study proposes a three‐dimensional convolutional neural network (3D‐CNN) based model. Datasets are made 100 ballast and Fujian sand particles, the (i.e., aspect ratio, roundness, sphericity, convexity) obtained by conventional methods used to label particles. For model training, feeding slice images into model, contour is automatically extracted, thereby can be learned Thereafter, applied predict new as testing. All results indicate trained on cut from three orthogonal planes presents highest prediction accuracy an error than 10%. Meanwhile, for concave angular guaranteed. The rotation‐equivariant confirmed, in which predicted values roughly independent orientations particle when cutting images. Superior methods, desirable one unified 3D‐CNN its complexity number triangular facets, thus saving computation cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Lipreading using convolutional neural network

In recent automatic speech recognition studies, deep learning architecture applications for acoustic modeling have eclipsed conventional sound features such as Mel-frequency cepstral coefficients. However, for visual speech recognition (VSR) studies, handcrafted visual feature extraction mechanisms are still widely utilized. In this paper, we propose to apply a convolutional neural network (CNN...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal for Numerical and Analytical Methods in Geomechanics

سال: 2021

ISSN: ['1096-9853', '0363-9061']

DOI: https://doi.org/10.1002/nag.3296